Meta陷入恐慌?内部爆料:在疯狂分析复制DeepSeek,高预算难以解释
Meta陷入恐慌?内部爆料:在疯狂分析复制DeepSeek,高预算难以解释「工程师正在疯狂地分析 DeepSeek,试图从中复制任何可能的东西。」DeepSeek 开源大模型的阳谋,切切实实震撼着美国 AI 公司。最先陷入恐慌的,似乎是同样推崇开源的 Meta。
「工程师正在疯狂地分析 DeepSeek,试图从中复制任何可能的东西。」DeepSeek 开源大模型的阳谋,切切实实震撼着美国 AI 公司。最先陷入恐慌的,似乎是同样推崇开源的 Meta。
2024又是AI精彩纷呈的一年。LLM不再是AI舞台上唯一的主角。随着预训练技术遭遇瓶颈,GPT-5迟迟未能问世,从业者开始从不同角度寻找突破。以o1为标志,大模型正式迈入“Post-Training”时代;开源发展迅猛,Llama 3.1首次击败闭源模型;中国本土大模型DeepSeek V3,在GPT-4o发布仅7个月后,用 1/10算力实现了几乎同等水平。
因为 V3 版本开源模型的发布,DeepSeek 又火了一把,而且这一次,是外网刷屏。 训练成本估计只有 Llama 3.1 405B 模型的 11 分之一,后者的效果还不如它。
DeepSeek-v3大模型横空出世,以1/11算力训练出超过Llama 3的开源模型,震撼了整个AI圈。
让 Llama 2 在 Windows 98 奔腾 2(Pentium II)机器上运行,不但成功了,输出达到 39.31 tok / 秒。
o1完整版公开仅10天,Scaling Law新范式就被逆向工程复现了!
OpenAI谷歌天天刷流量,微软也坐不住了,推出最新小模型Phi-4。 参数量仅14B,MMLU性能就和Llama 3.3/ Qwen2.5等70B级别大模型坐一桌。
OpenAI“双12”刚进行到第二天,就把大模型圈搅得好不热闹! 一边是Meta没预告就发布了Llama 3.3,70B版本就能实现以前405B的性能。
Llamacoder是Claude Artifacts的开源实现。 最大的亮点就是,左侧AI写代码,右侧实时渲染。 之前给大家推荐过一个基于Claude做的,Llamacoder是用了Meta 的 Llama 3.1 405B 作为底层语言模型。
开源模型阵营又迎来一员猛将:Tülu 3。它来自艾伦人工智能研究所(Ai2),目前包含 8B 和 70B 两个版本(未来还会有 405B 版本),并且其性能超过了 Llama 3.1 Instruct 的相应版本!长达 73 的技术报告详细介绍了后训练的细节。